Electron Transport Experiments & Model

Rich Stephens

Farhat Beg, John Pasley, Tammy Ma, Mike Key, Andy MacKinnon, Neil Alexander, Walt Unites
And entire crew at RAL expt
Mingsheng Wei, Yasuhiko Sentoku, Rod Mason, Andrey Solodov, Dale Welch

Fusion Science Center Meeting
August 28-29, 2006
Hertz Hall
Lawrence Livermore National Laboratory

This work was supported by the US Dept of Energy through various grants from the Office of Fusion Energy Sciences.
Nail wire targets designed for benchmarking

Rationale:
- Simple - no glue, simple geometry
 - Large head so laser can reliably hit it
- Accessible to diagnostics
- Small - completely simulate

Status:
- Tests at RAL show overall transport
 - More detailed diagnostics at Titan (this week)
- First simulation results show differences

100 \(\mu \)m dia head
20 \(\mu \)m dia wire
1 mm to bend
Cone-wire energy deposition is hard to model

- Cone has complex structure

- Laser interaction very sensitive to aiming?

XUV - 256 eV
Laser plasma interaction simpler in nail target

- 100 micron head is easier to hit
- Interaction surface is flat
- Focus spot is visible

It is convenient that the nail edges are highlighted.
Wire allows access to many diagnostics

- Did we have pinhole cameras that could see the top of the nail head and locate where the laser hit??

Reflecting Parabola

Incoming Laser

Target

K_α - 8.03 keV

12°

43°

backlight

XUV-256&68 ev

HOPG spectrometer
Diagnostics show details of transport in wire

• Return current heating - xuv
• Energetic electron current - K_{α}
• Surface heating - xuv
• Hydro expansion - backlight

• At Titan will add
• Surface vs Bulk current - Ti coated (Green et al expansion data suggested that heating was on surface)
• Laser directly on wire head
• External fields - (can’t field that til next year.)
68 eV image shows expansion

- Hydro jets at every inside edge
- Irregularities in expansion along wire
- Low level heating for entire length of wire
- Hotter for ~100 µm - associated with hot electrons and a surface
256 eV shows state at shorter time

- Can see through low density blow-off
- Limb brightening outlines wire
 - About 0.04 \(\mu \text{m} \) of Cu expanded a bit
- Surface current \(~300\ \mu\text{ms}\)
 - Similar to \(K_\alpha \) prop length
- Laser off center on head
K_α shows propagation of high energy electrons

- Electrons have limited range
 - Decay slope $\sim 220 \, \mu m$
- Surface current??
Current propagation different in nail target

- **Cone-wire emission**
 - seen from the whole length (~1 mm)
 - peak at the end of the wire (e⁻ refluxing?)

- **Nail target emission**
 - decays exponentially. (1/e ~ 100 µm)
We aim to accurately model this experiment

That means properly describing the experiment as well as properly simulating the physics

- Target geometry
- Laser pulse - including prepulse
- Properly generate current
- Analyze in terms of diagnostics
Laser prepulse will modify initial state

- Prepulse causes substantial deformation
 - RAL prepulse varied, guessed at 10^{14} W/cm² for 400 ps
 - Titan prepulse is measured on each shot

Density contours, g/cc

We must know initial geometry
Simulations take different approaches

<table>
<thead>
<tr>
<th></th>
<th>e-PLAS</th>
<th>LSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D (Cartesian) EXPLICIT PIC code</td>
<td></td>
<td>Fully 3D (cylindrical or Cartesian) direct IMPLICIT PIC code</td>
</tr>
<tr>
<td>All kinetic equations</td>
<td></td>
<td>Fluid background electrons, & ions, Kinetic for selected species (hot electrons)</td>
</tr>
<tr>
<td>Full relativistic Coulomb collision between e-e, e-ion, ion-ion</td>
<td>Relativistic corrected Spitzer collision model</td>
<td>Classic Spitzer collision model</td>
</tr>
<tr>
<td>I~4×10^{19} W/cm2, duration 0.9 ps, focal spot: 10 µm (fwhm), Off-centered focus (deliberately)</td>
<td>I~1.7×10^{20} W/cm2, rise in 1fs and stays flat for 1 ps, focal spot: 10 µm (fwhm)</td>
<td>I~1.7×10^{20} W/cm2, top hat profile with 10 fs rise time, focal spot: 10 µm (fwhm)</td>
</tr>
<tr>
<td>Starts at T= 0</td>
<td>Starts at T= 100 eV</td>
<td>Start at T = 5 eV or 10 eV</td>
</tr>
<tr>
<td>Ionization fixed at +2 (deuterium), $n_e=200 \ n_c$</td>
<td>Ionization fixed at +6 (Carbon), $n_e= 300 \ n_c$</td>
<td>Ionization fixed at $Z=2,15$ (Copper), solid target</td>
</tr>
<tr>
<td>Self consistent model of hot electron production</td>
<td>Electrons created with heuristic recipe</td>
<td>Electrons excited from the background plasma with heuristic recipe</td>
</tr>
</tbody>
</table>
Hot electron propagation patterns

Energy Density

- Energy density
- Electron: t=825fs
- Ion: t=825fs
- 100 keV, 10 keV, 1 keV, 100 eV, 10 eV

PICLS

Energy localization inside the nail head.

e-PLAS

Most of hot electrons remained in the nail head (peak density: 2e22 cm\(^{-3}\)).

Exponentially decay to 1e20 cm\(^{-3}\) from x=90 to 260 µm.

Some surface current flow along the wire surface.

2D LSP

Target: Cu\(^{15+}\) with initial \(T_e\)@ 10 eV

- t=1ps
- t=5ps (maximum temperature)

Energy localization inside the nail head.

STRONG SURFACE CURRENT ALONG THE WIRE.

Hot electrons mainly propagating along the axis.

Some currents flow along the wire surface.
Heating of the nail target - above keV electron temperature

PICLS

Energy Density at t=2ps

- 1 keV
- 500 eV
- 5 keV
- 100 keV

Range: 0.05 - 500 keV\(\times(n/n_0)\) 0.05 - 50 keV\(\times(n/n_0)\)

e-PLAS

607 fs

- **Temp**
- **Cold Temp**

T_e max: 3 keV

T_e >100 keV in the head!

Strong Joule heating by surface current \((T_e \sim T_i > 500 \text{ eV})\)
Heating of the nail target (continued)
-- Radiative cooling is important

2D LSP

1D HYADES simulation show that plasma quickly cools down to around 400 eV in less than 1 ps due to radiative cooling.

In LSP, Initial ionization charge state has a big effect on the background plasma heating.

Inline average atom LTE opacities;
100 radiation groups from 50eV to 40keV (log distribution);
SESAME 114 EOS. Hydro is ON.
Strong surface E&M fields in all simulations - diagnostics will be fielded in future to confirm their presence.

PICLS

Range: \pm 10MG

e-PLAS

300 MG fields cover the wire surface and the nail head

E-field is 2 MV/µm
Strong surface E&M fields in all simulations - diagnostics will be fielded in future to confirm their presence

Strong surface magnetic fields, 100 MG - similar to e-PLAS simulation

Net current (~ 400 kA) about 3x of Alfven current

E_r at t=0.5 ps

$E_r \sim 2$ MV/µm, similar to e-PLAS simulation
Modeling status and future work

• **Similarities**
 - Energy localization near the nail head
 - Strong surface fields

• **Differences**
 - Strong surface current for PICLS, compared to e-PLAS and LSP

• **Problem**
 - Unrealistic temperatures

- Closer approach to parameters used in the experiments
 — preformed plasma due to pre-pulse
 — target dimensions, density
 — similar laser specifications

- Check electron scattering functions

- Analyze output in terms of comparable to experimental diagnostics
Experiments and Models are converging

• Initial nail experiments show electron propagation
 – No long range energetic electrons visible
 – Surface heating visible with ~ range of energetic electrons
 – Hydro jets appear at all inside angles, irregular heating
 – Results substantially different from cone wire configuration
 – More detailed measurements to come on Titan

• Will end with understanding of differences between simulations and experiment??