Fast-Ignition Integrated Experiments on OMEGA

W. Theobald
University of Rochester
Laboratory for Laser Energetics

9th MEETING FUSION SCIENCE CENTER FOR EXTREME STATES OF MATTER
Lawrence Livermore National Laboratory
Livermore CA
AUGUST 4-6, 2010
Summary

Integrated experiments study the coupling of fast electron energy into a compressed core

- The short-pulse laser produced up to $1.5 \pm 0.5 \times 10^7$ additional neutrons with proper beam timing
- Shock breakout measurements confirm an intact cone tip at the neutron peak, showing that the neutron yield is due fast electron coupling
- 20 MeV electrons are measured in the laser forward direction, indicating that the pre-plasma plays an important role in the interaction
- DRACO-LSP integrated simulations model target implosion and heating and indicate a better coupling at higher laser intensity
Collaborators

¹Laboratory for Laser Energetics and Fusion Science Center, Rochester, NY, USA

²Massachusetts Institute of Technology, Cambridge, MA, USA

³Graduate School of Engineering, Osaka University, Japan

⁴Lawrence Livermore National Laboratory, USA

⁵University of California, San Diego, USA

⁶General Atomics, USA
Integrated fast-ignition experiments with re-entrant cone targets have begun at the Omega/Omega EP Laser Facility.

Shell material: CD
Shell diameter: \(\sim 870 \, \mu m\)
Shell thickness: \(\sim 40 \, \mu m\)

Implosion
- **Energy**: \(\sim 18 \, kJ\) (54 beams)
- **Wavelength**: 351 nm
- **Pulse shape**: Low-adiabat, \(\alpha \approx 1.5\)
- **Pulse duration**: \(\sim 3\) ns
- **Implosion velocity**: \(\sim 2 \times 10^7\) cm/s

Target focal spot, log scale
- \(R_{80} = 21 \, \mu m\)

Gold cone
- 10 \(\mu m\), 15 \(\mu m\), 10 \(\mu m\), Center of shell
- 40 \(\mu m\)

Heating beam
- **Energy**: \(\sim 1.0 \, kJ\)
- **Wavelength**: 1053 nm
- **Pulse duration**: \(\sim 10\) ps
- **Intensity**: \(\sim 1 \times 10^{19} \, W/cm^2\)

Relative timing varied
A new detector was developed that measures reliably neutron yields in FI-cone experiments

![Image of detector](Image)

- 3-L volume
- Xylene + PPO + bis-MSB + O₂

Liquid scintillators enriched with an O₂ quenching agent have a fast decay time—the γ-ray-induced fluorescence is efficiently suppressed.

The neutron time-of-flight signals are limited by neutron statistics

- The 2.45 MeV neutron peak is smeared out because of neutron scattering and a large detector volume (~3.5 liter)

- The total neutron yield was obtained by integration
The neutron yield increased more than a factor of two with an appropriately timed OMEGA EP beam.

1.5 ± 0.5 x 10^7 additional neutrons were produced with the short-pulse laser.
Significantly more MeV electrons were produced in the laser forward direction.

Ponderomotive scaling predicts an averaged $T_{\text{hot}} \sim 0.3$ MeV for a Gaussian laser profile (space and time).
2D hydrodynamic simulations predict plasma filling in the cone because of a laser pre-pulse

- The IR critical density contour moved ~100 μm away from the inner cone tip surface
- Self-focusing in pre-plasma and EP-beam non-uniformities might explain the observed hard electron spectrum
- A decrease in coupling efficiency with pre-plasma has been measured in other experiments with cone-wire-targets on EP and TITAN laser

*HYDRA simulations by T. Ma and F. Beg, UCSD
Shock-breakout measurements confirm an intact cone tip up to peak neutron production in integrated experiments.
Hydro-code DRACO\(^1\) and hybrid-PIC code LSP\(^2\) were coupled to simulate integrated fast-ignition experiments\(^3\)

DRACO:
- 2-D cylindrically symmetric hydrodynamic code
- Radiation transport is disabled in the present simulations
- Calculates the neutron yield

LSP:
- 2-D/3-D implicit hybrid-PIC code
- Hybrid fluid-kinetic description for plasma electrons
- Intra- and inter- species collisions based on modified Spitzer rates
- Lee and More resistivity model for the plasma background
- Thomas-Fermi equation of state

Low-energy electrons do not heat the core in integrated DRACO-LSP simulation

- Simulation for 10ps, 1kJ, \(R_{80} = 27\mu\text{m} \), 20% EP energy converted into fast electrons. Injection before peak \(\rho R \)
- \(n_{\text{hot}} \) and \(B \) are shown at the peak of the laser pulse
About 3% of the electron-beam energy is deposited in the core region with $\rho>100$ g/cm3

<table>
<thead>
<tr>
<th>Energy deposition</th>
<th>Fraction of e-beam energy</th>
<th>Fraction of laser energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition in gold</td>
<td>52%</td>
<td>10%</td>
</tr>
<tr>
<td>Deposition in plastic with $\rho>10$ g/cm3</td>
<td>25%</td>
<td>5%</td>
</tr>
<tr>
<td>Deposition in plastic with $\rho>100$ g/cm3</td>
<td>3%</td>
<td>0.6 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neutron yield increase</th>
<th>Neutron yield without hot electrons</th>
<th>6.6×108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron yield with hot electrons</td>
<td>7.4×108</td>
<td></td>
</tr>
<tr>
<td>Neutron yield increase</td>
<td>8×107</td>
<td></td>
</tr>
<tr>
<td>Neutron yield increase in the region with $\rho>100$ g/cm3</td>
<td>1.6×107</td>
<td></td>
</tr>
</tbody>
</table>
The hot-electron energy can be too low for a good penetration through the Au cone tip

Mean hot-electron energy assuming ponderomotive scaling
(averaged within FWHM of the spatial and temporal distribution for a Gaussian pulse)

- Mean-free path of 250 keV electrons is a few μm and is smaller than the cone wall thickness
- Higher laser intensities are required
The simulations predict an improved fast electron coupling at higher laser intensity

Simulation for 10ps, 2.6kJ, $R_{80}=15\mu$m. Injection before peak ρR

- CE (>100 g/cm³) improves from 0.6% to 2.4%
- CE (>10 g/cm³) slightly improves from 5% to 6%
Integrated experiments study the coupling of fast electron energy into a compressed core

- The short-pulse laser produced up to $1.5 \pm 0.5 \times 10^7$ additional neutrons with proper beam timing
- Shock breakout measurements confirm an intact cone tip at the neutron peak, showing that the neutron yield is due fast electron coupling
- 20 MeV electrons are measured in the laser forward direction, indicating that the pre-plasma plays an important role in the interaction
- DRACO-LSP integrated simulations model target implosion and heating and indicate a better coupling at higher laser intensity