Laser-Plasma Interaction Experiments at Shock-Ignition relevant Intensities

W. Theobald University of Rochester Laboratory for Laser Energetics 9th MEETING FUSION SCIENCE CENTER FOR EXTREME STATES OF MATTER Lawrence Livermore National Laboratory Livermore CA AUGUST 4-6, 2010 Summary

High intensity laser-plasma interaction experiments provide valuable backscattering, fast electron, and shock wave timing data

Single high intensity beams interacting with imploding capsule:

- Up to 35% of the shock-beam laser energy is lost due to backscatter
- Up to 16% of the energy of the high intensity beams was converted into hot electrons of ~45 keV temperature

6 overlapping beams interacting a preformed plasma from planar target:

- The measured hot electron temperature is a factor ~3 higher (~150 keV) and conversion efficiencies are lower (~6%)
- The measured optical signatures of the 1st and 2nd shock waves roughly agree with 1D simulations
- A curved and delayed shock front at breakout indicates that 2D effects are important

Collaborators

K. S. Anderson,¹ R. Betti,¹ D. Fratanduono,¹ J. A. Frenje,² M. Hohenberger,¹ S. Hu,¹ D. D. Meyerhofer,¹ T. C. Sangster,¹ W. Seka,¹ C. Stoeckl,¹ B. Yaakobi,¹ A. Casner,³ X. Ribeyre,⁴ and G. Schurtz⁴

¹Fusion Science Center and Laboratory for Laser Energetics, Rochester, NY, USA

²Massachusetts Institute of Technology, Cambridge, MA, USA

³CEA, DAM, DIF, Arpajon, France

⁴Centre Lasers Intenses et Applications, University of Bordeaux, France

Shock ignition relies on a shaped laser pulse with a trailing high-intensity spike

The ignitor shock wave significantly increases its strength as it propagates through the converging shell.

FSC

UR

Laser-plasma interaction during the spike pulse and hotelectron generation are important issues for shock ignition

^{*}LILAC simulations by C. D. Zhou and R. Betti

60 OMEGA beams were split into 40 low-intensity drive beams and 20 tightly focused, delayed beams

- Density scale length ~200 μm
- The delay and intensity of the tightly focused beams were varied
- Laser backscattering and hot-electron generation were studied

Up to 35% of the shock-beam laser energy is lost due to backscatter

Up to 16% of the shock-beam energy is converted into hot electrons of 45-keV temperature

A laser-plasma interaction experiment was performed in planar geometry with overlapping beams

The measured optical signatures of the 1st and 2nd shock waves roughly agree with 1D simulations with the code CHIC

1D hydrodynamic simulations predict an initial plasma pressure of ~200 Mbar for ~1×10¹⁵ W/cm² UR

FSC

VISAR measured a decaying, curved shock front in auartz for 1x10¹⁵ W/cm²

 2D DRACO and CHIC simulations will study the shock front curvature and slowing down due to 2D effects

Up to 6% of the high intensity laser energy is converted into hot electrons

- The measured hot electron temperature is a factor ~3 higher compared to spherical target experiment
- 1D LILAC simulations will be performed to study the effect of the fast electron component on the shock formation and shock propagation

High intensity laser-plasma interaction experiments provide valuable backscattering, fast electron, and shock wave timing data

Single high intensity beams interacting with imploding capsule:

- Up to 35% of the shock-beam laser energy is lost due to backscatter
- Up to 16% of the energy of the high intensity beams was converted into hot electrons of ~45 keV temperature

6 overlapping beams interacting a preformed plasma from planar target:

- The measured hot electron temperature is a factor ~3 higher (~150 keV) and conversion efficiencies are lower (~6%)
- The measured optical signatures of the 1st and 2nd shock waves roughly agree with 1D simulations
- A curved and delayed shock front at breakout indicates that 2D effects are important