Laser-Plasma Interaction Experiments at Shock-Ignition relevant Intensities

W. Theobald
University of Rochester
Laboratory for Laser Energetics

1st shock breakout from Mo
2nd shock catching up

9th MEETING FUSION SCIENCE CENTER FOR EXTREME STATES OF MATTER
Lawrence Livermore National Laboratory
Livermore CA
AUGUST 4-6, 2010
Summary

High intensity laser-plasma interaction experiments provide valuable backscattering, fast electron, and shock wave timing data

Single high intensity beams interacting with imploding capsule:
- Up to 35% of the shock-beam laser energy is lost due to backscatter
- Up to 16% of the energy of the high intensity beams was converted into hot electrons of ~45 keV temperature

6 overlapping beams interacting a preformed plasma from planar target:
- The measured hot electron temperature is a factor ~3 higher (~150 keV) and conversion efficiencies are lower (~6%)
- The measured optical signatures of the 1st and 2nd shock waves roughly agree with 1D simulations
- A curved and delayed shock front at breakout indicates that 2D effects are important
Collaborators

K. S. Anderson,¹ R. Betti,¹ D. Fratanduono,¹ J. A. Frenje,² M. Hohenberger,¹ S. Hu,¹ D. D. Meyerhofer,¹ T. C. Sangster,¹ W. Seka,¹ C. Stoeckl,¹ B. Yaakobi,¹ A. Casner,³ X. Ribeyre,⁴ and G. Schurtz⁴

¹Fusion Science Center and Laboratory for Laser Energetics, Rochester, NY, USA

²Massachusetts Institute of Technology, Cambridge, MA, USA

³CEA, DAM, DIF, Arpajon, France

⁴Centre Lasers Intenses et Applications, University of Bordeaux, France
Shock ignition relies on a shaped laser pulse with a trailing high-intensity spike.

The ignitor shock wave significantly increases its strength as it propagates through the converging shell.
Laser-plasma interaction during the spike pulse and hot-electron generation are important issues for shock ignition

Shock-ignition target with 350-kJ total energy

- I_{Laser}
- ρR range of 100 keV e^-

Int. (1015 W/cm2)

Time (ns)

10.0 10.5 11.0

0 1 2 3 4 5

ρR (mg/cm2)

0 20 40 60 80 100

Hot e^- with Maxwellian $T_{hot} = 150$ keV, $E_{hot} = 17\%$ of spike energy, treated using a multigroup diffusion model

Gain

0 10 20 30 40 50 60

Shock-launching time (ns)

1-D 350 kJ

Marginally igniting (no hot e^-)

Boosted margin (with hot e^-)

*LILAC simulations by C. D. Zhou and R. Betti
60 OMEGA beams were split into 40 low-intensity drive beams and 20 tightly focused, delayed beams

- Density scale length ~200 μm
- The delay and intensity of the tightly focused beams were varied
- Laser backscattering and hot-electron generation were studied
Up to 35% of the shock-beam laser energy is lost due to backscatter

- No measurable signal of the 3/2 harmonic
- SRS dominates back reflection at highest intensity
- SBS reflection is relatively stable at ~10%
Up to 16% of the shock-beam energy is converted into hot electrons of 45-keV temperature.
A laser-plasma interaction experiment was performed in planar geometry with overlapping beams

- Pre-plasma: $\sim 2 \times 10^{14}$ W/cm2
- Shock: $\sim 1 - 6 \times 10^{15}$ W/cm2
- Density scale length: ~ 500 μm
The measured optical signatures of the 1st and 2nd shock waves roughly agree with 1D simulations with the code CHIC

Density

1st shock breakout from Mo into quartz (~1.5 ns)

2nd shock catching up (~2.2 ns)

Temperature

Shock breakout at rear side (~4.8 ns). Observed later in the experiment
1D hydrodynamic simulations predict an initial plasma pressure of ~200 Mbar for ~1×10^{15} W/cm2.
VISAR measured a decaying, curved shock front in quartz for 1×10^{15} W/cm2

- 2D DRACO and CHIC simulations will study the shock front curvature and slowing down due to 2D effects

Predicted shock velocity from 1D simulation ~ 47 μm/ns
Up to 6% of the high intensity laser energy is converted into hot electrons

- The measured hot electron temperature is a factor ~3 higher compared to spherical target experiment
- 1D LILAC simulations will be performed to study the effect of the fast electron component on the shock formation and shock propagation
High intensity laser-plasma interaction experiments provide valuable backscattering, fast electron, and shock wave timing data

Summary/Conclusions

Single high intensity beams interacting with imploding capsule:
• Up to 35% of the shock-beam laser energy is lost due to backscatter
• Up to 16% of the energy of the high intensity beams was converted into hot electrons of ~45 keV temperature

6 overlapping beams interacting a preformed plasma from planar target:
• The measured hot electron temperature is a factor ~3 higher (~150 keV) and conversion efficiencies are lower (~6%)
• The measured optical signatures of the 1st and 2nd shock waves roughly agree with 1D simulations
• A curved and delayed shock front at breakout indicates that 2D effects are important