Laser-Plasma Interaction Experiments at Shock-Ignition

] relevant Intensities
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Summary
High intensity laser-plasma interaction experiments provide valuable

backscattering, fast electron, and shock wave timing data
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Single high intensity beams interacting with imploding capsule:
 Up to 35% of the shock-beam laser energy is lost due to backscatter

« Upto 16% of the energy of the high intensity beams was converted into
hot electrons of ~45 keV temperature

6 overlapping beams interacting a preformed plasma from planar target:

« The measured hot electron temperature is a factor ~3 higher (~150 keV)
and conversion efficiencies are lower (~6%)

« The measured optical signatures of the 1st and 2"d shock waves roughly
agree with 1D simulations

A curved and delayed shock front at breakout indicates that 2D effects
are important

Monday, August 16, 2010



Collaborators
FSG =5

K. S. Anderson,! R. Betti,! D. Fratanduono,! J. A. Frenje,2 M.
Hohenberger,! S. Hu,! D. D. Meyerhofer,! T. C. Sangster,! W. Seka,! C.
Stoeckl,! B. Yaakobi,! A. Casner,? X. Ribeyre,* and G. Schurtz*

lFusion Science Center and Laboratory for Laser Energetics, Rochester,
NY, USA

Massachusetts Institute of Technology, Cambridge, MA, USA
SCEA, DAM, DIF, Arpajon, France

4Centre Lasers Intenses et Applications, University of Bordeaux, France

Monday, August 16, 2010



Shock ignition relies on a shaped laser pulse
with a trailing high-intensity spike
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The ignitor shock wave significantly increases its strength
as it propagates through the converging shell.




Laser—plasma interaction during the spike pulse and hot-
electron generation are important issues for shock ignition
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Hot e— with Maxwellian Tyt = 150 keV, E},ot = 17% of spike
energy, treated using a multigroup diffusion model*

TC7870d *LILAC simulations by C. D. Zhou and R. Betti
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60 OMEGA beams were split into 40 low-intensity drive
beams and 20 tightly focused, delayed beams
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» Density scale length ~200 um
« The delay and intensity of the tightly focused beams were varied

 Laser backscattering and hot-electron generation were studied
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Up to 35% of the shock-beam laser energy

Is lost due to backscatter
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Up to 16% of the shock-beam energy is converted into
hot electrons of 45-keV temperature
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A laser-plasma interaction experiment was performed in
planar geometry with overlapping beams
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The measured optical signatures of the 1st and 2" shock
waves roughly agree with 1D simulations with the code CHIC
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1D hydrodynamic simulations predict an initial plasma
pressure of ~200 Mbar for ~1x101> W/cm?
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~35-40 Mbar in quartz
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VISAR measured a decaying,

auartz for 1x10* W/cm?

curved shock front in
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Predicted shock velocity from 1D
simulation ~47 um/ns

« 2D DRACO and CHIC simulations will study the shock front curvature and slowing

down due to 2D effects
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Up to 6% of the high intensity laser energy is converted
Into hot electrons
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« The measured hot electron temperature is a factor ~3 higher compared to
spherical target experiment

« 1D LILAC simulations will be performed to study the effect of the fast electron
component on the shock formation and shock propagation
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Summary/Conclusions
High intensity laser-plasma interaction experiments provide valuable

backscattering, fast electron, and shock wave timing data
FSE@ =5

Single high intensity beams interacting with imploding capsule:
 Up to 35% of the shock-beam laser energy is lost due to backscatter

« Upto 16% of the energy of the high intensity beams was converted into
hot electrons of ~45 keV temperature

6 overlapping beams interacting a preformed plasma from planar target:

« The measured hot electron temperature is a factor ~3 higher (~150 keV)
and conversion efficiencies are lower (~6%)

« The measured optical signatures of the 1st and 2"d shock waves roughly
agree with 1D simulations

A curved and delayed shock front at breakout indicates that 2D effects
are important
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