Targets for Benchmark Experiments

Rich Stephens General Atomics

Laser Facility - J. Pasley Analysis tools - M.-S. Wei Diagnostics - L. Van Woerkom, M. Key

Summary - F. Beg

3rd Fusion Science Center meeting Rochester, NY

27 January 2006

Goal to design and field benchmark expts

- Current experiments have been modeled descriptively
 - Experiments too complex to model
 - Codes can't model at scale length of experiments
 - Parameters too uncertain for use in code validation

e⁻ transport described w/o E/M fields!

- e⁻ generation efficiency & energy from local intensity (Beg scaling)
- Random transverse momentum independent of location
- Includes scattering, but no fields.

Physics hidden in heuristic rules

Targets integrate several components

Previous targets

- Designed to show FI performance specs
- Complicated geometry
- Intertwined phenomena

Proton focusing surface in protective cone

Target should be focused on one phenomenon

Laser interactions variable and complex

- Characterize laser pulses
- Improve interaction area
 - Simple geometry
 - Insensitive to pointing errors

Target simplify laser interaction

Goal to design and field benchmark expts

- Current experiments have been modeled descriptively
 - Experiments too complex to model
 - Codes can't model at scale length of experiments
 - Parameters too uncertain for use in code validation
- \Rightarrow Remove free parameters:
 - Use simple geometries
 - Focus on single phenomena
 - Small enough to be modeled
 - Compatible with laser pointing errors
 - Carefully characterize laser pulse
 - Carefully characterize experiments

Hybrid PIC model (Paris) (C Toupin et al. In Inertial Fusion Science and Applications 99 Publ. Elsevier p471 (2000)

ICFT/P2006-011

- Test modeling by PIC-hybrid codes
- Go to 1-D geometry -- But simplify
 - Simplifies electron paths
 - Improves diagnostic access
 - Maximizes signal?
 - Cheaper

Laser plasma interface

- Test PIC codes description of electron generation
- Targets are flat foils
 - Micromachined flat surface
 - Slightly buried fluorescent layer
- Look directly at interface
 - Time sensitive reflectivity
 - Electrons injected into metal

Control plasma gradient with controlled prepulse

- Future benchmarking experiments will need well defined hot plasma
 - Density, temperature for useable scale length
- Aerogel/Foam experiments will be used to develop proper characterization
 - Titan, EP are suitable platforms

These targets are part of carefully defined experiments on ZPW

- Laser Pasley
- Analysis Wei

Diagnostics - Van Woerkom

