

6th Meeting of Fusion Science Center for Excellence for Extreme States of Matter and Fast Ignition Physics

> Terawatt Facility Department of Physics University of Nevada, Reno

T.E. Cowan and Y. Sentoku groups: E. d'Humieres (P.D.) M. Bakeman, T. Burris-Mog, B. Chrisman*, S. Gaillard, R. Mishra, J. Rassuchine (Graduate students)

> Jacobs School of Engineering, UCSD 4-5 August 2007

> > *direct support from FSC

- Collisional PIC simulations (PICLS) of cone-in-shell fast ignition targets* (see talk by Y. Sentoku)
- Nevada Terawatt Facility 100 TW laser facility commissioning
- Nanofabrication of sharp-tipped conical targets
- PICLS simulations of fundamental laser-cone interaction physics*
 - UT-UNR expts (THOR) on x-ray production in free-standing pyramids & cones
 - LANL-UNR expts (Trident) on enhanced proton acceleration using cones
 - LULI-UNR expts (LULI 100 TW) on enhanced isochoric heating using cones
 - * Direct support from FSC

- Laser chain commissioned (ongoing "routine" operation)
 - 30 J into vacuum compressor
 - 18 J compressed (300 fs)
 - 10⁻⁶ intensity contrast
- Next steps:
 - Contrast improvement with fast Pockel Cells (in process)
 - OAP focusing, high-intensity shots (fall/winter 2007)
 - Combined laser Z pinch experiment for magnetized isochoric heating (Oct 2007: Presura, Cowan, Sentoku *et al.*)
 - 20 conversion laser-cone coupling (fall/winter 2007)
- Change in facility management, late August 2007
- Access for future FSC-relevant experiments...to be determined....

Significant progress with nanofabricated cone-shaped laser targets....

Free Standing Au (10 μ m wall)

x-ray

proton

Free Standing Cu (10µm wall)

x-ray

HED

Smoother (!) than prior cones

Potential benefit for Fast Ignition from Fundamental Laser-Cone Interaction Physics

Y. Sentoku, K. Mima, H. Ruhl, Y. Toyama, R. Kodama, T.E. Cowan, "Laser Light and Hot Electron Micro Focusing using a Conical Target," *Phys. Plasmas* **11**, 3083 (2004)

Sharp-tipped insert to FI target for increased conversion efficiency

- 2004/06 UT-UNR (Ditmire, Cowan, Sentoku, Le Galloudec, *et al.*)
 - Sharp-tipped reentrant Si pyramids/wedges (UT)
 - Free standing Au pyramids (UNR)
 - → hotter electrons with P polarization
- 2006 LANL-UNR-GSI (Flippo, Hegelich, Cowan, Sentoku *et al.*)
 - "Pizza"-top tapered Au cones (UNR)
 - → Enhanced proton acceleration (laser conversion efficiency)
- 2006/07 LULI-Milan-Osaka-GA-UNR (Baton, Batani, Kodama, Back, Cowan, Sentoku et al.)
 - Narrow tapered free-standing Cu cones (UNR)
 - Osaka Au cones, GA reduced mass targets (C. Back)
 - Ultra-high contrast (2ω) irradiation
 - → Self-generated magnetic confinement, Enhanced material heating
 - (J. Rassuchine, Ph.D. dissertation, UNR)
- 2007 UT-UNR (Ditmire, Le Galloudec, Sentoku *et al.*)
 - Free standing Cu cones (UNR)

Results from Experiments and PICLS modeling

Enhanced proton acceleration, electron confinement, and heating observed ! (few-fold increase in laser conversion?!)

Can sharp-tipped cones improve Fast Ignition ?

Questions to be addressed:

- Improved conversion efficiency for those electrons which penetrate to core?
- Does laser pressure keep the cone open during FI-length pulse?
- Can nested cones protect sharp-tip from implosion?
- If laser-cone physics proves favorable, can high contrast FI pulse be produced?