HEDLP Workshop
August 26, 2008

Laboratory Astrophysics at Z:
Stellar Interior Opacities

stellar interior iron transitions

Jim Bailey
Sandia National Laboratories
jebaile@sandia.gov
Many people and institutions contribute to this work

Sandia National Laboratories, Albuquerque, N.M., 87185-1196

C.A. Iglesias
University of California, Lawrence Livermore National Laboratory, Livermore, CA, 94550

J. Abdallah Jr.
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

J.J. MacFarlane, I. Golovkin, P. Wang
Prism Computational Sciences, Madison, WI

R.C. Mancini
University of Nevada, Reno, NV

C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, S. Mazevet, J.C. Pain
Commissariat à l’Énergie Atomique, CEA/DIF, B.P. 12, 91680 Bruyères-le-Châtel, France

M. Bump, O. Garcia, and T.C. Moore
K-Tech Corporation, Albuquerque, NM
Modern HED facilities can provide essential stellar physics opacity knowledge.

Stellar structure depends on opacities.

- Predictions of the best studied star, our sun, do not agree with observations.
- Solar structure depends on opacities that have never been measured.

Challenge: create and diagnose stellar interior conditions on earth.

- Z opacity experiments reach T ~ 156 eV.
- High T enables first studies of iron transitions important in stellar interiors.
- New generation of HED facilities might simultaneously reach stellar density.
Modern solar models disagree with observations. Why?

- Measured boundary $R_{CZ} = 0.713 \pm 0.001$
- Predicted $R_{CZ} = 0.726$
- Thirteen σ difference

"The CZ problem"

- Boundary location depends on radiation transport
- A 10-20% opacity change solves the CZ problem.
- This accuracy is a challenge – experiments are needed to know if the solar problem arises in the opacities or elsewhere.
To understand stars we need accurate opacities for mid-Z atoms at $T_e > 150$ eV and $n_e > 10^{22} \text{ cm}^{-3}$

Opacity Project calculations at bottom of solar convection zone
$T_e=193$ eV, $n_e=1x10^{22} \text{ cm}^{-3}$

- K-shell oxygen, K-shell neon, and L-shell iron are important at the CZ base
- The complexity of L-shell iron demands special scrutiny
- The importance of any single element is diluted by the mixture

Example:
Changing Fe L-shell by 1.5x causes ~11% change in total mean opacity
Opacity experiment challenges grow as temperature and density increase.

Comparison of unattenuated and attenuated spectra determines transmission:

\[T = \exp \left(-\kappa \rho x \right) \]

At high temperature:
More energy in heating x-rays is required to produce uniform conditions
A brighter backlighter is required to overwhelm the self emission.
Z opacity experiments reach $T \sim 156$ eV, two times higher than in prior Fe research.

Fe + Mg at $T_e \sim 156$ eV, $n_e \sim 6.9 \times 10^{21}$ cm$^{-3}$

- Mg is the “thermometer”, Fe is the test element

J.E. Bailey et al., PRL 99, 265002 (2007)
Opacity experiment priority: produce the charge states found in stellar interiors

- Transitions in Fe with L-shell vacancies are important in the sun
- Laboratory experiments must produce high enough temperatures to ionize Fe into the L shell

The charge state distribution depends on T_e/n_e and it strongly affects both bound-bound and bound-free transitions.
Modern detailed opacity models are in remarkable overall agreement with the Fe data.
The OP model used in solar research predicts Fe L-shell opacity that is too low at Z conditions.

OP Rosseland mean is ~ 1.5x lower than OPAS at Z conditions. If this difference persisted at solar conditions, it would solve the CZ problem.
Discrepancies at Z conditions raise a caution flag for solar opacities

At the base of the convection zone (T=193 eV, $n_e=10^{23}\text{cm}^{-3}$):
Iron frequency-dependent opacities possess some differences.
But Rosseland mean opacities are not significantly different, even though they disagree at Z conditions.
Why?

Red=OP - $\kappa_R=2606 \text{cm}^2/\text{g}$
Green=OPAS - $\kappa_R=2646 \text{cm}^2/\text{g}$
Blue = OPAL - $\kappa_R=2731 \text{cm}^2/\text{g}$
Experiments at higher density are a logical next step in stellar opacity research

We need to overcome the desire of the sample to expand when it is heated!

Increased tamping

Employ large low Z samples with dilute Fe concentration

Deliberately shock sample

Probe dynamic hohlraum interior

All options will likely require the greater heating x-rays and brighter backlighting available on the refurbished Z or the NIF
Modern HED facilities can provide essential stellar physics opacity knowledge

JB’s Prioritized list of new research for stars:
1. Iron L shell at density and temperature high enough to test Stark broadening and continuum lowering physics ($n_e \sim 10^{22} \text{ cm}^{-3}$, $T_e \sim 160 \text{ eV}$).
2. Effect of mixed low-Z and mid-Z elements (ion dynamics, influence on wavefunctions)
3. Oxygen and neon.

JB’s Prioritized list of new research for IFE:
1. Cu and Ge L shell
2. Effect of mixed low Z and mid Z