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NIF will provide a platform for a Fast Ignition (FI) 
demonstration experiment in the next few years

The NIF laser is nearly complete 
— Indirect drive hot spot ignition 

campaign will begin in 2010

Advanced Radiography Capability (ARC) 
Petawatt will be ready by 2011

— 10 kJ in 20 ps and a 140 µm spot
— Enable radiography of imploded fuel 

assembly

A non-cryogenic FI coupling campaign is 
planned at ignition scale for 2011 - 2012

— ARC upgraded to 9 kJ in 5 ps and 40 µm
— Accommodate NIF indirect drive 

configuration 
— Develop hydro. equivalent CD targets 

which meet the requirements for 
electron coupling demonstration
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Indirect drive Fast Ignition targets have specific 
hydrodynamic requirements

implode adequate mass to 
adequate density and ρ r for 
minimum energy investment

minimize transport 
distance from cone to fuel

maximize compactness of 
assembly by minimizing 
volume of hot spot

minimize blow-off of high-
Z material from cone tip 
into ignition region

preserve cone and 
maintain ignitor beam 
path to fuel assembly

The NIF FI implosion goal is ρ ~ 300 g/cm3 and ρ r ~ 
2 g/cm2 using 0.6 MJ of compression laser energy
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Outline

Introduction
— Indirect drive FI target requirements

Detailed capsule designs
— Single-shock and multi-shock 1-D designs
— Sensitivity studies to pulse-shaping errors
— 2-D simulations of capsule-cone interaction
— Assessing and controlling cone tip blow-off

Hohlraum design
— Energetics and symmetry
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A quasi-self-similar, single-shock design was 
developed to minimize the hot spot in 1-D
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The sensitivity of this design to pulse shaping errors 
is being assessed

Further assessments of the design’s robustness to other sources of error 
(EOS uncertainty, opacity uncertainties, etc.) are planned
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Multi-shock NIF-scale designs are also being studied
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Cone-focused FI implosions are inherently 2-D and 
involve complex hydrodynamics

FI targets afford a large design space of parameters (cone thickness, 
angle, off-set, etc.) which must be scanned for an optimal design 

intersection of orthogonal 
flows from cone and cap-
sule blow-off hard x-ray pre-heat 

induced blow-off of cone 
within imploding capsule

shear between 
cone and shell

jetting of assembled 
fuel into cone and 
subsequent cone 
distortion
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In 2-D the single-shock design achieves an acceptably 
compact fuel mass if there is sufficient cone stand-off

Even with a substantial stand-off of the cone tip from the capsule center a 
damaging axial jet is directed into the cone tip
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Narrowing the cone angle diminishes the perturbation 
to the fuel assembly but causes the cone to collapse

Collapsing of the cone for small angles remains a design challenge — is 
there an optimal intermediate cone angle?
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Cone tip blow-off occurs in this design despite 
substantial dopant in the ablator

Tamping of the cone tip with beryllium will be necessary to control the gold 
blow-off and lining the hohlraum may reduce the L-band source

Au cone
DT ice

Be ablator Indirect drive designs have high M-
and L-band fluxes:

— M-band is absorbed by the ablator
— L-band penetrates the ablator and is 

absorbed by the cone tip
— Ablation and recompression of Au is 

RT unstable and a potential source 
of high-Z mix in ignition region
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Hohlraum simulations to assess energetics and 
symmetry are beginning 
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FI demonstration on NIF continues to pose many 
hydro. design challenges

1-D capsule hydrodynamics
— Continue optimization of designs for maximum ρ r, minimum hot 

spot size, and minimum total energy
— Continue sensitivity studies of designs to pulse shaping 

uncertainties, EOS uncertainties, etc.
— Develop CD non-cryo surrogates and pulse tuning strategy

2-D capsule hydrodynamics
— Develop strategy to preserve the cone from jetting or collapse 

before ignition time — without excessive stand-off or tip thickness
— Mitigate cone tip blow-off with increased ablator doping, low-Z 

tamping of the cone, or hohlraum lining

Hohlraum design
— Assess energetics and symmetry of various capsule designs
— Assess 3-D impact of cone in hohlraum

FI demonstration on NIF would provide a platform for 
HEDLP experimental science and a gateway to high gain IFE 


